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Abstract

We throw a new light on skew-adjoint endomorphisms and electromag-
netic �eld. They are presented in the framework of lorentzian space-time
of dimension 4, L4 with signature (-1,1,1,1). Kinds of endomorphisms and
associated tensors are inferred on L4. The inferred structures are applied
to electromagnetic �elds.

We �nd a more general tensorial representation of electromagnetic
tensor.

In general this analysis is conformed to two types of electromagnetic
tensors we know.
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framework of General Relativity.
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1 Introduction

The purpose of this article is to bring out some new insights about
topics that come into view in the �eld of skew-adjoint endomor-
phisms in connection with the electromagnetic �eld. In the analysis
of the mentioned endomorphisms and in its application to electro-
magnetic �eld, interestingly we not only rediscover topics already
solved, but rather we show how come up startling �ndings. Anyway
the matters developed herein attain more general viewpoints.

The theory of skew-adjoint endomorphisms that we are develop-
ing is constructed from the analysis and study of invariants on vec-
torial minkowskian spaces and their subspaces on the basis of the
study of annihilating polynomials, spectral theorem, etc... regarding
also minimal annihilating polynomials where relevant. Afterwards
this theory is applied to electromagnetic �eld.

The three �rst sections , are dealing with skew-adjoint endo-
morphism structure. We single out some interesting skew-adjoint
endomorphisms features that verify the equation of the annihilating
polynomial .

Thereafter we continue analyzing the invariants of the skew-
adjoint endomorphisms . We make a comment about a question
in connection with the transition to limit of the mentioned invari-
ants.

We continue constructing the skew-adjoint tensor from skew-
adjoint endomorphism de�ning and setting a metric beforehand.

Tracing back, into the 20th century, came out a huge number
of topics about all these objets some of which we are going over
here. They are amply known for everybody including students and
so there are a high number of articles and books that analyze closely
the mentioned objects ( see for example , [6] [8] [7] ,and so on ). It
does not mean that these simple tools are now out of date to go
further into some modern physical topics.

In the analysis of such structures we �rstly settle in two cases
already known ( pure electromagnetic �eld or regular case and pure
radiation �elds or singular cases). These cases are the most relevant
in physics.

The word radiation is not suitable for this analysis. I use it resting
upon the fact that it is used in the issues relating to electromagnetic
�eld.

The radiation case ( or singular case) is not analyzed here. We
are con�ned to the most remarkable regular cases (pure �eld).

I add an Annex ( Annex A) to give facilities to understand the
lorentzian vectorial spaces geometry in this article. For a more de-
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tailed account see [1], [3] , [11], [2].

2 Notations, symbols and terminology

In−1 stands for null cone into Ln.
I1 stands for null straight line.

Vectors are symbolized with over right arrow.
Tensors stand for bold uppercase letters.
Endomorphisms stand for normal uppercase letters.
The matrix of components of an endomorphism, tensor, etc.. is

shown closing into parenthesis the symbol of this endomorphism,
tensor, etc.. . For example (T) stands for the matrix of components
of T. (gαβ) is a matrix whose elements are gαβ.

The two vectors scalar product−→x and−→y is symbolized byG(−→x ,
−→
y)

where G is the metric tensor. Also is symbolized by −→x .−→y .
Subindex are symbolized by lowercase greek letters, saving λ and

µ that are used to denote invariants.
If a matrix A2 is decomposable, it is symbolized by A.A. If it is

not decomposable it is symbolized simply by A2

3 Annihilating polynomials in a lorentzian space-

time.

Following a straightforward way we begin with the analysis of in-
variant subspaces in a lorentzian space L4 constructing them on the
usual basis of annihilating polynomials into L4 or his subspaces. The
invariant subspaces are lorentzian, euclídean or null. Thereby �rstly
my purpose is the analysis of annihilating polynomials regarding an-
nihilating minimal polynomials where relevant.

3.1 Study of annihilating polynomial of grade 4, of a skew-
adjoint endomorphism A in a minkowskian space L4.

The most general case of annihilating polynomial in our context of
lorentzian space L4 is:

P (A) = A4 + a3A
3 + a2A

2 + a1A+ a0I

We have

∀
−→
X;
−→
X ∈ L4;P (A)

−→
X = 0
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Let be now A a skew-adjoint endomorphism on L4. It is easily
checked that

∀
−→
X,
−→
Y ∈ L4 ; g(

−→
X, P (A)

−→
Y) = 0 g(

−→
Y, P (A)

−→
X) = 0 (1)

Summing and subtracting equations 1 , and taking into account
that A2 and A4 are self-adjoint endomorphisms, and that A and A3

are skew-adjoint endomorphisms we have

∀
−→
X,
−→
Y ∈ L4 ; g(

−→
X, (A4 + a2A

2 + a0I)
−→
Y) = 0

; g(
−→
X, (a3A

3 + a1A)
−→
Y) = 0

One can easily verify

P4(A) ≡ A4 + a2A
2 + a0I = (0)

P3(A) ≡ (A)(a3A
2 + a1) = (0)

(2)

Only one of equations 2 is veri�ed and the other must be identically
null (his coe�cients must be 0). That is only if a3 and a1 are 0.

Therefore in this article we only will be concerned with the �rst
equation of 2.

So the annihilating polynomial is:

P4(A) ≡ A4 + a2A
2 + a0I = (0)

1

Summing up equation P4(A) ≡ A4 + a2A
2 + a0I = (0), depicts

annihilating polynomial on L4 that concern us.

3.2 Factorization of Annihilating polynomial on L4.

Agreeing on the foregoing sections, the goal of this article is the
examination of skew-adjoint endomorphism to investigate afterward
more closely electromagnetic �eld.

Here we are only concerned with the factorized polynomial:

P4(A) ≡ (A2 + ελ2I)(A2 + ηµ2I) (3)

ε = ±1 ; η ± 1
As it is easily checked

a2 = ελ2 + ηµ2 (4)

1However that does not mean we have to rule out the second case P3(A) ≡ (A)(a3A2+a1) =
(0). It is worthwhile to examine it aside outside this article. However henceforth we con�ne
only to the �rst equation of 2.
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a0 = εηλ2µ2 (5)

Further along, in other sections, we shall study the classi�cation
of annihilating polynomial P4(A) ≡ A4 + a2A

2 + a0I = (0) on the
basis of λ and µ.

3.3 Orthogonality relation between ker(A2+ελ2I) and ker(A2+
ηµ2I)

Here we shall prove:

If A is skew-adjoint endomorphism, λ 6= 0 or µ 6= 0, and
| λ |6=| µ | then

L4 ≡ ker(A2 + ελ2I)
⊥
⊕ ker(A2 + µ2I)

In fact

a)-
Let Pλ(A) ≡ A2 + ελ2I , Pµ(A) ≡ A2 + εµ2I

∀
−→
X ∈ ker(A2 + ελ2I),∀

−→
Y ∈ ker(A2 + ηµ2I) (6)

we have

−→
YA2−→X = −ελ2

−→
Y
−→
X

−→
XA2−→Y = −ηµ2−→X

−→
Y

(7)

We infer −→
X.
−→
Y.(ελ2 − ηµ2) = 0 (8)

Taking into account the foregoing assumptions we have:

∀
−→
X ∈ ker(A2 + ελ2I),∀

−→
Y ∈ ker(A2 + ηµ2I)

−→
X.
−→
Y = 0 (9)

and therefore

ker(A2 + ελ2I) ⊥ ker(A2 + ηµ2I) (10)
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b)-

According with spectral theorem (see for example [7] ) the inter-

section
−→
l =ker(A2 + ελ2I)∩ker(A2 + µλ2I) solely can be

−→
l =

−→
0 .

Any way we prove this intersection is empty, that is
−→
l =
−→
∅ .

If intersection is not empty, then there is a null vector
−→
l that

veri�es
(A2 + ελ2I)

−→
l = 0

(A2 + ηµ2I)
−→
l = 0

(11)

Subtracting equations 11 we have

(ελ2 − ηµ2)
−→
l =
−→
0 (12)

taking into account our previous assumptions λ 6= 0 or µ 6= 0,

and λ2 6= µ2 equation 12 involves
−→
l =
−→
0 2

Summing up

λ 6= 0 or µ 6= 0 and ελ2 6= ηµ2 (13)

involves orthogonality between ker(A2 + ελ2I) and ker(A2 + ηµ2I)

with zero intersection that is L4 ≡ ker(A2 + ελ2I)
⊥
⊕ ker(A2 + µ2I).

We call regular cases to the endomorphisms that verify
13.

As complement it is worthwhile to prove : If ker(A2+ελ2I)∩ker(A2+
µλ2I) 6= ∅ then

λ = 0 and µ = 0 or ελ2 = ηµ2 (14)

It is not hard to prove this proposition regarding 12
In the following sections we analyze invariants subspaces of A,

together with their minimal polynomials when relevant.
Notice if ε 6= η it is su�cient λ 6= 0 or µ 6= 0 to verify 13 .

3.4 Annihilating polynomials (A2 + ελ2I), (A2 + ηµ2I) and
their invariant subspaces structure

. We devote this section to study invariant subspaces in order to go
further into their study. In this stage we are in the context 13. So
we begin with the case we call regular �eld or pure �eld 3.

2In the case ε 6= η is enough λ 6= 0 or µ 6= 0 to ful�l L4 ≡ ker(A2 + ελ2I)
⊥
⊕ ker(A2 + µ2I)

3pure �eld or regular �eld are those that ful�l the conditions itemized in previous section,
that is λ 6= 0 or µ 6= 0, and λ2 6= µ2
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Hereinbelow we analyze cases in the context of regular case. We
select the case ε = 1 and η = −1 from which we shall constitute all
other cases in the framework of pure or regular �eld.

a )
We begin with the case of annihilating minimal polynomial of A on
L2 ≡ ker(A2 + ελ2I), ε = −1 ; λ 6= 0. One easily veri�es:

A2 − λ2I = (A− σλI)(A+ σλI) = (0)

σ = ±1

Then we have on L2

(A− σλI)−→p =
−→
0 ,−→p ∈ ker(A− σλI)

(A+ σλI)−→q =
−→
0 ,−→q ∈ ker(A+ σλI)

namely

A−→p = σλ−→p
A−→q = −σλ−→q

(15)

Let L2 ≡ ker(A2 − λ2I) :
Agreeing on 13 it is λ 6= 0

Using a classical language we tell that A has two eigenvectors
−→
X

and
−→
Y with eigenvalues respectively +σλ and −σλ.

Furthermore taking into regard that A is skew-adjoint we have
−→pA−→p = 0 = σλ−→p 2

−→qA−→q = 0 = −σλ−→q 2;σ = ±1
Since λ 6= 0 we have −→p 2 = −→q 2 = 0, thereby −→p and −→q are two

null eigenvectors. Thereby L2 is lorentzian.

In short:
In L2 there are two null eigenvectors

−→p and −→q with eigen-
values +σλ and −σλ, respectively ; σ = ±1.
L2 is a lorentzian subspace because has two null vectors. His or-
thogonal complementary is ker(A2 + ηµ2I) in accordance with 3.3.
Therefore the forth dimensional lorentzian space that concern us is
:

L4 = L2

⊥
⊕ ker(A2 + ηµ2I)

where L2 ≡ Ker(A− λI)(A+ λI).
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b)- Let us analyze now the structure of E2 ≡ ker(A2 + ηµ2I) for
η = +1. Here µ 6= 0 agreeing on previous assumption.

One easily veri�es

∀
−→
Y ∈ ker(A2 + µ2I) , ∃

−→
Z ;

A
−→
Y = νµ

−→
Z

A
−→
Z = −νµ

−→
Y, ; ν = ±1

Taking into account that A is skew-adjoint, we have:

−→
YA
−→
Y = 0 = µ

−→
Y.
−→
Z

−→
ZA
−→
Z = 0 = −µ

−→
Y.
−→
Z

−→
YA
−→
Z +

−→
ZA
−→
Y = 0 = µ

−→
Z 2 − µ

−→
Y2

Then, as µ 6= 0, we have (
−→
Y2 −

−→
Z 2) = 0 namely

−→
Y2 =

−→
Z 2

It is not hard to see that
−→
Z ∈ E2

Thereby both
−→
Y,
−→
Z ∈ E2 verify

A
−→
Y = νµ

−→
Z

A
−→
Z = −νµ

−→
Y

−→
Y.
−→
Z = 0 and

−→
Y2 =

−→
Z 2

(16)

ν = ±1

Here we have two possibilities:
1)�����

−→
Y and

−→
Z are null vectors. Herein it is veri�ed

−→
Y2 =

−→
Z 2 = 0, and−→

Y.
−→
Z = 0. Thereby

−→
Y = a

−→
Z that is

−→
Y and

−→
Z are proportional.

Agreeing on 16 we infer
−→
Y = a

−→
Z =

−→
0 , so we rule out that

−→
X

and
−→
Y would be null vectors.

2)����-
−→
Y and

−→
Z are nonull vectors.

They both can be timelike, or spacelike. If they are timelike they
must be orthogonal between them in contradiction with assumptions

( proposition settled in Annex A). Thereby we rule out
−→
Y and

−→
Z

timelike. So E2 is spacelike.

Summing up

L2 ≡ ker(A2 − λ2I) ; E2 ≡ ker(A2 + µ2I) ; L4 = L2

⊥
⊕ E2
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Henceforth we shall use these notations L2 and E2 as ker(A2 −
λ2I) and ker(A2 + µ2I)

This case is called pure �eld or regular case.
It is not hard to prove that all other regular cases are

composed of cases 1) and 2) or they are incongruous in our
context.

4 Invariants of skew-adjoints endomorphisms

.
Continuing with assumptions λ 6= 0 or µ 6= 0, and λ2 6= µ2 as

in foregoing section, annihilating minimal polynomials coe�cients
4, in L4, are the invariants of the endomorphism. Functions that
depend only on them are invariants too. In a minimal polynomial
P (A) = A4 + a2A

2 + a0I, a2 and a0 and also λ and µ are invariants
of the skew-adjoint endomorphism A.

4.1 Invariants λ and µ

.
The minimal polynomial on L4 that concerns us is

P (A) = A4 + a2A
2 + a0I ≡ (A2 + ελ2I)(A2 + ηµ2I)

λ and µ are functions of coe�cients ( therefore invariants ) in P (A).
In our analysis ε = −1 and η = 1, agreeing on previous sections.
Then we have the invariants

I1 = µ2 − λ2 = a2

I2 = −µ2λ2 = a0
(17)

Further along, it will be single out that the invariants λ and µ (
or I1 and I2) play a relevant role in electromagnetic �eld.

Notice a family of similar skew-adjoint endomorphisms have the
same invariants, since they have the same minimum polynomial and
therefore the same coe�cients.

5 Tensorial representation of skew-adjoint endo-

morphisms

In this section we shall illustrate the tensorial applications going
into details, that is developing the tensor components in the two
reference frames we show in the next.

4in this case we are dealing with minimal polinomials
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In an endomorphism A associated to a tensor A, the components
of endomorphism A are the mix components of a two-order tensor
A with the same basis in they both ( A and A).

That is we have (Aαβ) = (A β
α ).

As a matter of fact, the tensorial mix components A β
α and the

components of the associated endomorphism are the same (in con-
nection with the same base).

The tensorial representations involves a metric tensorG, in which
covariants components are gαβ and in which contravariants compo-
nents are gαβ.

Therefore we have

(Aαβ) = (gαλA β
λ )

5.1 Tensorial representation applied to regular case (pure
�eld)

We are working on L2

⊥
⊕ E2

(−→p ,−→q ) is a base on L2, and (
−→
Y,
−→
Z ) is an ortonormal base on

E2.
In this article I develop the components of tensor A in two ref-

erence frames: the mentioned (−→p ,−→q ,
−→
Y,
−→
Z ) and the (

−→
U,
−→
X,
−→
Y,
−→
Z )

where
−→p = a(

−→
X +

−→
εU)

−→q = b(
−→
X − ε

−→
U); ε = ±1

( see Annex B)

5.2 Reference frame (~p, ~q, ~Y, ~Z)

In L2 we rest upon the existence of the scalar product w = −→p .−→q to
de�ne the metric on L2. This is in covariant components :

(gαβ) =

(
0 w
w 0

)
; α, β = 0, 1
and in contravariants components

(gαβ) =

(
0 1

w
1
w

0

)
; α, β = 0, 1
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In E2 the metric is euclidian, so

(gαβ) = (gαβ) = (g β
λ ) =

(
1 0
0 1

)
; α, β = 2, 3

In the reference frame (~p, ~q, ~Y, ~Z) the metric in L4 in covariant
components is

(Gαβ) =


0 w 0 0
w 0 0 0
0 0 1 0
0 0 0 1

 ;α, β = 0, 3

and in contravariant components

(Gαβ) =


0 1

w
0 0

1
w

0 0 0
0 0 1 0
0 0 0 1

 ;α, β = 0, 3

Agreeing on foregoing propositions we have −→p ,−→q ,
−→
Y,
−→
Z veri�es

−→p .−→q = w;
−→
Y2 =

−→
Z 2 = 1; −→p 2 = −→q 2 = 0

p,q ⊥ Y,Z; Y ⊥ Z

.
Now let us see how are the tensorial components of A.
We settle in the tensor A and his components.
In the mix form the matrix of tensor components ( or what is the

same thing, the matrix of associated endomorphism components) is

(A β
α ) =


σλ 0 0 0
0 −σλ 0 0
0 0 0 +νµ
0 0 −νµ 0

 ;α, β = 0, 3;σ = ±1; ν = ±1

(18)
A dyadic representation ( in the context of the mix components)

is

A = σλ(−→p ⊗−→p −−→q ⊗−→q ) + νµ
−→
Y ∧

−→
Z , σ = ±1; ν = ±1 (19)

In the covariant form the matrix of the tensor components is
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(Aαβ) =


0 σλw 0 0

−σλw 0 0 0
0 0 0 +νµ
0 0 −νµ 0

 ;α, β = 0, 3;σ = ±1, ν = ±1,

(20)
The physical covariant dyadic representation of the tensor is

A = σλw−→p ∧ −→q + νµ
−→
Y ∧

−→
Z ;σ = ±1; ν ± 1 (21)

For the electromagnetic �eld it is similar to [4] if σ = ν = 1 and
w = 1 .

The matrix of contravariant components of the tensor A is

(Aαβ) =


0 −σ 1

w
λ 0 0

σ 1
w
λ 0 0 0

0 0 0 +νµ
0 0 −νµ 0

 ;α, β = 0, 3;σ = ±1; ν = ±1

The dyadic representation of the tensor is

A = −σλ 1

w
−→p ∧ −→q + νµ

−→
Y ∧

−→
Z ;σ = ±1; ν ± 1 (22)

It should be notice how w appears only into the context of co-
variant and contravariant components.

5.3 Reference frame: (~U, ~X, ~Y, ~Z)

Herein we are dealing with a reference frame associated to observer
and with the invariant subspaces of the endomorphism A (see Annex
B).

This reference frame (
−→
U,
−→
X,
−→
Y,
−→
Z ) constitute an orthonormal

base.
In this reference frame the metric tensor is

(gαβ) = (gαβ) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ;α, β = 0, 3

Without going into details the matrix of mix components of ten-
sor A is
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(A β
α ) =


0 σλ 0 0
σλ 0 0 0
0 0 0 +νµ
0 0 −νµ 0

 ;α, β = 0, 3;σ = ±1; ν ± 1

(23)
In the dyadic depiction of the tensor (in this case only for mix

tensor �eld components) we have

A = (σλ(
−→
U ⊗

−→
X +

−→
X ⊗

−→
U) + νµ

−→
Y ∧

−→
Z );σ = ±1; ν ± 1 (24)

This result is agreeing with [5] for σ = 1; ν = 1
Also without going into details the matrix of covariant compo-

nents of tensor A is

(Aαβ) =


0 σλ 0 0
−σλ 0 0 0
0 0 0 +νµ
0 0 −νµ 0

 ;α, β = 0, 3;σ = ±1; ν ± 1

(25)
In the dyadic depiction of the tensor (in this case only for covari-

ant tensor �eld components) we have

A = σλ
−→
U ∧

−→
X + νµ

−→
Y ∧

−→
Z ;σ = ±1; ν ± 1 (26)

These results are similar to [9].

6 Some questions about interpretation in regard

to A

In this section we analyze aside and in short some relevant point of
interest.

6.1 Concept of limit for λ and µ that is to say λ → 0 or
and µ→ 0

.
In this article λ and µ only take values on the basis of classi�ca-

tion of P (A) and afterwards on the classi�cation of electromagnetic
�eld. In this article it is not included the concept of limit unless
otherwise speci�ed.
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6.2 Special signi�cance of w

w is the scalar product of eigenvectors of skew-adjoint endomor-
phism A, −→p and −→q .

If w = 1 we are dealing with the Sach�s tetrad. In general we
achieve the standpoint of special relativity if w = 1.

w only appears in covariant and contravariant components of A
in the reference frame (~p, ~q, ~Y, ~Z). Any way it has not impact in
stress-energy tensor in any referential frame.

6.3 Freedom grades of A

Skew-adjoint endomorphisms and tensors on L4 have six freedom
grades. This endomorphism depends heavily on peculiarities of vec-

tors −→p ,−→q ,
−→
Y ,
−→
Z . Taking into account their modulus ( −→p 2 = 0

and −→q 2 = 0,
−→
Y2 = 1 and

−→
Z 2 = 1) and the relation among them, it

is not hard to see that the tensor A has six freedom grades.
In the case (widely agreed) in which
−→
Y ∧

−→
Z = −(−→p ∧ −→q )∗

there are only �ve freedom grades.

7 Singular cases.

Until now we have analyzed �elds that satisfy requirements 13. In
this section we sketch some singular relevant cases.

A thorough study of these cases gains in complexity and goes out
of our purposes.

Furthermore, in order that the singular cases are radiation in re-
gard to propagation, they have to ful�l requirements that di�eren-
tial �eld equations compel. Really it is not suitable to call radiation
�elds to the singular cases since they can or cannot coincide with
propagation �elds cases. We use the term radiation according to
some authors.

7.1 Classi�cation of singular cases regarding annihilating
and annihilating minimal polynomials.

The possible cases are in the next table:
Annihilating.pol. Minimal.pol.

A.A.A2 A.A2

A2.A2 A2

A.A3 A.A3

All these cases deserve a detailed study aside. They are beyond the
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scope of this article.

8 Electromagnetic tensor

Henceforth the skew-adjoint tensor A that matches electromagnetic
�eld will be denoted F.

The values of σ and ν are in some extent arbitrary. Simply σ
and ν, as a matter of fact, will not be required in our classi�cation
hereafter. In general we choice σ = 1 , ν = 1.

The types of electromagnetic �eld we show in this article agree
with 13. We call pure �elds to these electromagnetic �eld. Pure
electromagnetic �eld is the case that concern us in this article.

The electromagnetic tensor �eld with covariant components 21
in the dyadic context is :

F = wλ−→p ∧ −→q + µ
−→
Y ∧

−→
Z (27)

The electromagnetic tensor �eld with contravariant components
22 in the dyadic context is :

F = −λ 1

w
−→p ∧ −→q + µ

−→
Y ∧

−→
Z (28)

In these cases it is suitable point out λ 6= 0 or µ 6= 0 and λ 6= µ

9 Stress-energy tensor of electromagnetic �eld

In this section we are only concerned with stress-energy tensor of
pure electromagnetic �eld

As we know, in this case the stress-energy tensor is

T = −(F.F− 1

4
G.tr(F.F))

We start in the context of mix components matrix of F according
with 18 ( being σ = 1 , ν = 1 ) with the base (p,q,Y,Z). Firstly
we construct F.F and tr(F.F).

Therefore

(F β
α ) =


λ 0 0 0
0 −λ 0 0
0 0 0 µ
0 0 −µ 0

 ;α, β = 0, 3

Then
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(F.F) β
α =


λ 0 0 0
0 −λ 0 0
0 0 0 µ
0 0 −µ 0



λ 0 0 0
0 −λ 0 0
0 0 0 µ
0 0 −µ 0



=


λ2 0 0 0
0 λ2 0 0
0 0 −µ2 0
0 0 0 −µ2


; α, β = 0, 3

tr(F.F)=2(λ2 − µ2)

Taking into account that the matrix of mix components of G is

(G) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


it is not hard to see that

(T β
α ) =


−χ2 0 0 0
0 −χ2 0 0
0 0 χ2 0
0 0 0 χ2


where χ2 = 1

2
(λ2 + µ2)

To go from a pseudo-orthonormal base (see AnnexB) (−→p ,−→q ,
−→
Y,
−→
Z )

to the orthonormal base (
−→
U,
−→
X,
−→
Y,
−→
Z ) we utilize the equations

−→p = a(
−→
X +

−→
U)

−→q = b(
−→
X −

−→
U)

Here −→p .−→q = w where w = 2ab, a and b are components of null

eigenvectors in the reference frame (
−→
U,
−→
X) ;

−→
U2 = −1,

−→
Y2 =

−→
Z 2 = 1−→

X2 = 1 and −→p .
−→
Y = −→p .

−→
Z = −→q .

−→
Y = −→q .

−→
Z =

−→
X.
−→
Y =

−→
X.
−→
Z =−→

Y.
−→
Z =

−→
U.
−→
X =

−→
U.
−→
Y =

−→
U.
−→
Z = 0.

Therefore for an observer with a reference frame (
−→
U,
−→
X,
−→
Y,
−→
Z ),

taking into account the previous change of base, and in the context of
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covariants and contravariant components, it is easy to infer without
going into details that the stress-energy tensor is:

(Tαβ) = (Tαβ) =


χ2 0 0 0
0 −χ2 0 0
0 0 χ2 0
0 0 0 χ2


Showing dyadic form in the context of covariant and contravari-

ant components then we have

T = χ2(u⊗ u− z⊗ z+ x⊗ x+ y⊗ y) (29)

where χ2 = 1
2
(λ2 + µ2) is the proper energy (see [4]).
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10 Conclusions

In this article we have brought out a formulation of electromagnetic
�eld resting upon the analysis of annihilating polynomial of skew-
adjoint endomorphism.

Thereby the electromagnetic tensor of a pure electromagnetic

�eld in a covariant form and in the reference frame (−→p ,−→q ,
−→
Y,
−→
Z )

is :
F = (λw)−→p ∧ −→q + µ

−→
Y ∧

−→
Z

where
−→p .−→q = w;

−→
Y2 =

−→
Z 2 = 1; −→p 2 = −→q 2 = 0

−→p ,−→q ⊥
−→
Y,
−→
Z ;
−→
Y ⊥

−→
Z

If in the observer material reference frame (−→p ,−→q ,
−→
Y,
−→
Z ) is w=1

then we are in the basic theory. If w 6= 1 the factor w appears in
the electromagnetic tensor in his covariant and cotravariant form in
the cited reference frame.

In the reference frame (
−→
U,
−→
X,
−→
Y,
−→
Z ) the w factor does not appears.
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ANNEXES

A Some propositions about lorentzian vectorial

spaces geometry.

In this article some propositions and de�nitions necessaries to deal
with vectorial spacetime, are shown. Most of these propositions are
shown without proving since it is not the subject of this article.

As far as I know the most thorough study about lorentzian vec-
torial space is in [1], [2], and [11] .
Ln stands for a lorentzian space of signature (-1,1,....1). In the

spacetime L4 we are limited to dimension 4, signature (-1,1,1,1).
Ei i = 1, 2, 3 stands for an euclidian subspace of L4.
I1 stands for a null straight line.
Ik k = 1, 2, 3, 4 stands for a null subspace or space.

A.1 De�nitions

Spacelike
It is easily checked that a subspace generated by orthogonal space-
like vectors , is an euclidian subspace. This euclidian subspace is
named spacelike subspace.

All his vectors are spacelike.
A subspace spacelike is euclidian.

Causal subspace
It contains timelike, spacelike and null vectors.

Null subspace
It is a subspace formed of a null vector and a subspace orthogonal

to it. Vectors of this orthogonal space are spacelike.
If the subspace orthogonal to the null vector is a 3D spacelike ,

then this is constituted by null vector and three spacelike vectors
ortogonal to it. This space is called properly null space I4

A properly null space is solely formed by one null vector and also
a subspace generated by three spacelike vectors orthogonal to the
null vector. It does not contains timelike vectors.

Vectors orthogonal to a causal subspace, are spacelike vectors.
Thereby a subspace orthogonal to a null vector is spacelike.

In a null subspace, a reference frame formed by spacelike, is mov-
ing at light speed.
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A.2 Orthogonality relations

Two timelike vectors can not be orthogonal.
If two null vectors are orthogonal then they are proportional.

They are orthogonal to themselves.
A vector orthogonal to a timelike vector is spacelike vector. A

vector orthogonal to a null vector, is spacelike vector or null vector.
A vector orthogonal to a spacelike vector is spacelike or timelike

or null vector.
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B Concepts about referential frame at rest

respect an observer.

B.1 De�nition of reference frame at rest respect an ob-
server.

We de�ne a reference frame at rest related to an observer, as refer-
ence frame such that the matrix (Gr) of the metric tensor covariant
or contravariant components in this reference frame is:

(Gr) =


−1

1
1

1


Thereby the vectorial base of the reference frame at rest respect an
observer must be orthonormal.

B.2 Passage from the pseudo-orthonormal base to an or-
thonormal base at rest.

That is from the pseudo-orthonormal base (−→p ,−→q ,
−→
Y,
−→
Z ) to the or-

thonormal base (
−→
U,
−→
X,
−→
Y,
−→
Z )

As we saw earlier in a pseudo-orthonormal base we have:

−→p 2 = −→q 2 = 0;−→p .−→q = w;
−→
Y.
−→
Z = −→p .

−→
Y = −→p .

−→
Z = −→q .

−→
Y = −→q .

−→
Z = 0

−→
Y2 =

−→
Z 2 = 1

In the orthonormal basis (
−→
U,
−→
X,
−→
Y,
−→
Z ) we have

−→
U2 = −1;

−→
X2 =

−→
Y2 =

−→
Z 2 = 1

−→
U.
−→
X =

−→
U.
−→
Y =

−→
U.
−→
Z =

−→
X.
−→
Y =

−→
X.
−→
Z =

−→
Y.
−→
Z = 0

The passage equations are:

−→p = ap
−→
X + bp

−→
U

−→q = aq
−→
X + bq

−→
U

−→
Y and

−→
Z remain the same.

It is easily checked that:

ap = εbp = a

aq = ηbq = b
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It must be η = −ε. Then the transition equations become:

p = a(ε
−→
U +

−→
X)

q = b(−ε
−→
U +

−→
X)

Here we have −→p .−→q = 2ab = w.
To keep the orientation toward the future must be a > 0, b < 0,

ε = +1, thereby w = 2ab < 0
Then

p = a(
−→
U +

−→
X)

q = b(−
−→
U +

−→
X)
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